twitter
rss

A dye laser is a laser which uses an organic dye as the lasing medium, usually as a liquid solution. Compared to gases and most solid state lasing media, a dye can usually be used for a much wider range of wavelengths, often spanning 50 to 100 nanometers or more. The wide bandwidth makes them particularly suitable for tunable lasers and pulsed lasers. The dye rhodamine 6G, for example, can be tuned from 635 nm (orangish-red) to 560 nm (greenish-yellow), and produce pulses as short as 16 femtoseconds. Moreover, the dye can be replaced by another type in order to generate an even broader range of wavelengths with the same laser, from the near-infrared to the near-ultraviolet, although this usually requires replacing other optical components in the laser as well.
Dye lasers were independently discovered by P. P. Sorokin and F. P. Schäfer (and colleagues) in 1966.
In addition to the usual liquid state, dye lasers are also available as solid state dye lasers (SSDL). SSDL use dye-doped organic matrices as gain medium.
The dyes used in these lasers contain rather large organic molecules which fluoresce. The incoming light excites the dye molecules into the state of being ready to emit stimulated radiation, the singlet state. In this state, the molecules emit light via fluorescence, and the dye is transparent to the lasing wavelength. Within a microsecond, or less, the molecules will change to their triplet state. In the triplet state, light is emitted via phosphorescence, and the molecules absorb the lasing wavelength, making the dye opaque. Liquid dyes also have an extremely high lasing threshold. Flashlamp pumped lasers need a flash with an extremely short duration, to deliver the large amounts of energy necessary to bring the dye past threshold before triplet absorption overcomes singlet emission. Dye lasers with an external pump laser can direct enough energy of the proper wavelength into the dye with a relatively small amount of input energy, but the dye must be circulated at high speeds to keep the triplet molecules out of the beam path.


Since organic dyes tend to decompose under the influence of light, the dye solution is normally circulated from a large reservoir.[11] The dye solution can be flowing through a cuvette, i.e., a glass container, or be as a dye jet, i.e., as a sheet-like stream in open air from a specially-shaped nozzle. With a dye jet, one avoids reflection losses from the glass surfaces and contamination of the walls of the cuvette. These advantages come at the cost of a more-complicated alignment.
Liquid dyes have very high gain as laser media. The beam needs to make only a few passes through the liquid to reach full design power, and hence, the high transmittance of the output coupler. The high gain also leads to high losses, because reflection from the dye cell walls, or flashlamp reflector, will dramatically reduce the amount of energy available to the beam. Pump cavities are often coated, anodized, or otherwise made of a material that will not reflect at the lasing wavelength while reflecting at the pump wavelength.[10]
Some of the laser dyes are rhodamine (orange, 540--680 nm), fluorescein (green, 530--560 nm), coumarin (blue 490--620 nm), stilbene (violet 410--480 nm), umbelliferone (blue, 450--470 nm), tetracene, malachite green, and others.[21][22] While some dyes are actually used in food coloring, most dyes are very toxic, and often carcinogenic.[23] Many dyes, such as rhodamine 6G, (in its chloride form), can be very corrosive to all metals except stainless steel. Although dyes have very broad fluorescence spectrums, the dye's absorption and emission will tend to center on a certain wavelength and taper off to each side, forming a tunability curve, with the absorption center being of a shorter wavelength than the emission center. Rhodamine 6G, for example, has its highest output around 590 nm, and the conversion efficiency lowers as the laser is tuned to either side of this wavelength.
A wide variety of solvents can be used, although some dyes will dissolve better in some solvents than in others. Some of the solvents used are water, glycol, ethanol, methanol, hexane, cyclohexane, cyclodextrin, and many others. Solvents are often highly toxic, and can sometimes be absorbed directly through the skin, or through inhaled vapors. Many solvents are also extremely flammable. The various solvents can also have an effect on the specific color of the dye solution and, thus, on the lasing bandwidth obtainable with a particular laser-pumping source.
Adamantane is added to some dyes to prolong their life.

Cycloheptatriene and cyclooctatetraene (COT) can be added as triplet quenchers for rhodamine G, increasing the laser output power. Output power of 1.4 kilowatt at 585 nm was achieved using Rhodamine 6G with COT in methanol-water solution.







Rhodamine 6G Chloride powder; mixed with methanol;
 emitting yellow light under the influence of a green laser



0 komentar:

Posting Komentar